
 1

SOLVING A CLASS OF STOCHASTIC MIXED-INTEGER
PROGRAMS WITH BRANCH AND PRICE

Eduardo F. Silva
R. Kevin Wood

Operations Research Department

Naval Postgraduate School
Monterey, CA 93943

26 August 2004

ABSTRACT

This paper first describes a class of stochastic mixed-integer programs that have
column-oriented formulations suitable for solution by a branch-and-price algorithm
(B&P). We then survey several examples, and use a stochastic facility-location problem
(SFLP) for a detailed demonstration of modeling and solution techniques. Computational
results with a scenario representation of uncertain costs, demands and capacities show
that B&P can be orders of magnitude faster than solving the standard formulation by
branch and bound; and this can be true even for single-scenario, i.e., deterministic,
problems. We also demonstrate how B&P can solve SFLP exactly (as exactly as a
deterministic mixed-integer program) when demands and other parameters can be
represented as independent, random variables satisfying certain conditions. Our
algorithm, based on COIN-OR’s open-source code and run under Microsoft Windows on
a personal computer, demonstrates just how accessible B&P technology has become.

1 INTRODUCTION

This paper defines a class of stochastic mixed-integer programs (SMIPs) whose

instances are amenable to column-oriented formulations, and then shows how to solve

such formulations with a branch-and-price algorithm (B&P). The phrase “branch and

price” was coined by Savelsbergh (1997), but was first proposed by Johnson (1989) and

implemented by Desrochers and Solomon (1989) and Desrochers et al. (1992). The

technique combines dynamic column generation, known widely through the “cutting

stock problem” (Gilmore and Gomory 1961), with standard branch and bound.

 2

Stochastic programmers have only just begun to see that B&P applies to their

problems, and we find only two papers on the topic: Damodaran and Wilhelm (2004)

and Lulli and Sen (2004). (However, Shiina and Birge 2004 and Singh et al. 2004 use

column-generation without branch and bound to solve SMIPs.) Those papers investigate

specific applications of B&P to stochastic programming. In contrast, we describe a

complete class of problems to which B&P applies; in similarity, we show impressive

computational results.

We begin by describing a general class of mixed-integer, two-stage, stochastic

programs whose standard formulations translate easily into column-oriented

formulations. We then provide examples, showing how stochastic extensions of several

well-known deterministic models fit this framework: the elastic generalized assignment

problem (Brown and Graves 1981); crew-scheduling (Vance et al. 1997, Day and Ryan

1997); vehicle-routing problems (e.g., Desrosiers et al. 1995); and the origin-destination

integer multicommodity flow problem (Barnhart et al. 2000). One additional problem, a

stochastic facility-location problem (SFLP), guides our detailed exploration of the B&P

solution approach.

We initially model and solve a version of SFLP with uncertain demands, costs

and capacities, all represented through scenarios. Such representations often appear in

the stochastic-programming literature (e.g., Butler and Dyer 1999, Chen et al. 2002,

Ahmed and Sahinidis 2003, Lulli and Sen 2004). (The primary advantage to a scenario-

based representation is that it allows arbitrary dependence among uncertain parameters.)

However, another common formulation approach defines individual probability

distributions for the stochastic program’s parameters; typically, these parameters are

 3

assumed independent (e.g., Bertsimas 1992, Zhou and Liu 2003). We will show how

B&P can solve SFLP in this situation, too. Furthermore, we will solve the problem

exactly, that is, with the same certitude that prevails in deterministic mixed-integer

programs. This contrasts with alternative solution procedures that provide only

probabilistic or asymptotic guarantees for solution quality (e.g., , Carøe and Tind 1998,

Sen and Higle 2000, Ahmed and Sahinidis 2003).

Solution methods for two-stage stochastic programs (TSSPs) with mixed-integer

variables and “scenario uncertainty” typically employ Benders decomposition (Benders

1962), or extensions thereof, to the original model. Examples include the integer L-

shaped decomposition from Laporte and Louveaux (1993), and the methods developed by

Carøe and Tind (1998) and by Sen and Higle (2000). Unfortunately, all of these

decompositions use a master problem whose linear-programming relaxation is no

stronger than the linear-programming relaxation of the original model (measured over the

master-problem variables which the two formulations have in common). Consequently,

these decompositions will suffer if the original model formulation has a poor continuous

relaxation. In contrast, B&P solves a column-oriented reformulation of a model—also by

a form of decomposition—but that reformulation will normally have a much tighter

relaxation than the original model.

We construct our B&P algorithm using COIN-OR’s open-source code (COIN

2004) coupled with a commercial optimizer, CPLEX (ILOG 2002), to solve the master

problem and certain subproblems. A personal computer with a Windows operating

system comprises the computing platform. We believe that the use of standard software

 4

and hardware like this demonstrates just how accessible B&P technology has become,

and we hope this paper helps spur interest in this technology.

The next section describes a particular class of mixed-integer TSSPs and shows

how to convert their standard formulations to column-oriented ones. Several models

from the literature provide concrete examples. Section 3 presents the SFLP with scenario

uncertainty; describes how to solve instances with B&P; and provides computational

results. Section 4 presents a version of SFLP where random parameters take on

continuous distributions; describes how to solve instances with B&P; and provides

computational results. Section 5 investigates some computational enhancements, and

section 6 presents conclusions.

2 GENERAL METHODOLOGY

We will show that mixed-integer TSSPs of the following special class are

common:

Formulation (TSSP0)

 ()min (,)
i

i i i i i
i I

E h
∈

 + ∑ ξx
c x x ξ (1)

 s.t. i i
i I

A
∈

=∑ x b (2)

 i iX i I∈ ∀ ∈x (3)

 where, for all i I∈ , (,) min
i

i i i i ih =
y

x ξ f y (4)

 s.t i i i i iD B≥ +y x d (5)

 i iY∈y , (6)

 5

and where vec(, , ,)i i i i iB D≡ξ d f . The sets Xi require all ix to be bounded and integral,

and the Yi will normally require, at least, non-negativity of the yi. The objective-function

term (,)
i

i i i
i I

E h
∈

 ∑ ξ x ξ is called the recourse function, and matrices iD are often

referred to as recourse matrices (Walkup and Wets 1967). We further assume that the

model exhibits relatively complete recourse (Rockafellar and Wets 1976), which implies

that for any i iX∈x , an optimal solution yi, satisfying constraints (5) and (6), can always

be found. We note that iD I= in some of our examples, implying the property of simple

recourse (Beale 1955, Wets 1966). However, this is not an inherent requirement of this

class of problems.

The key feature of TSSP0 is that the recourse function decomposes by

“subproblem” i.

Because all ix are integer, and the sets Xi are bounded, the principles of Dantzig-

Wolfe decomposition apply (Dantzig and Wolfe 1960), as extended to integer

programming by Appelgren (1969). (See Wolsey 1998, section 11.2, for a

comprehensive discussion.) To this end, let ˆ k
i iX∈x , ik K∈ , denote the enumerated

first-stage solutions for subproblem i; because of relatively complete recourse,

ˆ(,)
i

k
i ii iE h

 ξ x ξ is well defined for all such ˆ k
ix . Now, because of the special structure,

we can embed ˆ[(,)]
i

k
i i iE hξ x ξ , the decomposed recourse function, into the column costs of

a column-oriented formulation for TSSP0:

 6

Column-Oriented, Mixed Integer, Two-Stage Stochastic Program (CTSSP0)

Indices

i ∈ I subproblems

k ∈ Ki indices for feasible solutions ˆ k
i iX∈x

Data

ˆ k
ix the kth feasible solution ˆ k

i iX∈x

ic first-stage costs for subproblem i

Decision variables

k
iλ 1 if ˆ k

i iX∈x is selected, and 0 otherwise;

Formulation (CTSSP0)

 ()ˆ ˆmin [(,)]
i

i

k k k
i i i i i

i I k K

E h λ
∈ ∈

+∑∑ ξλ
c x x ξ (7)

 ()ˆs.t.
i

k k
i i i

i I k K

A λ
∈ ∈

=∑∑ x b (8)

 1
i

k
i

k K

i Iλ
∈

= ∀ ∈∑ (9)

 { }0,1 ,k
i i kλ ∈ ∀ (10)

Constraints (9) are often referred to as “convexity constraints.”

CTSSP0 can be applied when first-stage variables are general integers, but binary

variables are typical, and we assume this restriction for simplicity. Second-stage

variables may be continuous and/or integer.

 7

Naturally, the cardinalities of the index sets Ki may be enormous, and it will

usually be necessary to solve CTSSP0 without explicitly enumerating the ˆ k
ix . Before

discussing such issues, however, we would like to provide examples of how this

reformulation technique applies to some problems from the literature. We supply only

short descriptions of the problems, and ask to the reader to refer to the references for

more details. For simplicity, we hereafter drop the subscript on the expectation operator,

because it should be clear from the context.

2.1 Elastic Generalized Assignment Problem
 (Brown and Graves 1981, Appleget and Wood 2000)

The objective of the elastic generalized assignment problem (EGAP) is to

minimize the cost of assigning capacity-consuming tasks j ∈ J to capacitated agents i ∈ I,

so that (i) each task is assigned to exactly one agent, and (ii) the total capacity assigned to

agent i does not exceed its (potentially uncertain) capacity iu unless an appropriate per-

unit penalty fi is paid. If the capacity required by agent i to complete task j is a random

variable ijb , and the direct cost of that assignment is ijc , then a stochastic version of the

EGAP is (Spoerl and Wood 2003):

SEGAP

 ()min , (,)ij ij i i i i
i I j J

c x E h u
∈ ∈

 +

∑ ∑

x
x b (11)

 s.t. 1ij
i I

x j J
∈

= ∀ ∈∑ (12)

 {0,1} ,ijx i I j J∈ ∀ ∈ ∀ ∈ (13)

 8

 where (), (,) min
i

i i i i i i
y

h u f y=x b (14)

 s.t i ij ij i
j J

y b x u
∈

≥ −∑ (15)

 0iy ≥ . (16)

Here, ijx equals 1 if task j is assigned to agent i and is 0 otherwise, and iy represents

agent i’s capacity violation. (), (,)i i i iE h u
 x b therefore represents the expected

capacity-violation penalty for agent i.

The conversion of SEGAP to a column-oriented formulation is straightforward

(Savelsbergh 1997 creates the analogous formulation for a deterministic, inelastic GAP).

Each variable represents a potential (joint) assignment of tasks to a particular agent, i.e., a

collection of tasks that an agent might be required to perform.

Column-Oriented Formulation for SEGAP (CSEGAP)

Indices

i ∈ I agents

j ∈ J tasks

k ∈ Ki assignment of tasks to agent i

Data

ˆk
ijx 1 if task j is assigned to agent i in the kth assignment of tasks to agent i

ˆ k
ix ()

1 2 | |

ˆ ˆ ˆ, ,...,
J

k k k
ij ij ijx x x , the kth assignment vector for agent i

 9

Xi the set of all possible assignments of tasks ˆ k
ix for agent i (The index set Ki can

now be completely defined through this relationship: ˆ
i

k
k K i iX∈ =x∪ .)

ˆk
ic expected cost of the kth assignment of tasks to agent i

(()ˆ ˆ ˆ , (,)k k k
i i i i i i ic E h u = + c x x b for all i I∈ and ik K∈)

Decision variables

k
iλ 1 if the kth joint assignment of tasks to agent i is chosen, and 0 otherwise;

Formulation (CSEGAP)

 ˆmin
i

k k
i i

i I k K
c λ

∈ ∈
∑ ∑

λ
 (17)

 ˆs.t. 1
i

k k
ij i

i I k K
x j Jλ

∈ ∈
= ∀ ∈∑ ∑ (18)

 1
i

k
i

k K
i Iλ

∈
= ∀ ∈∑ (19)

 {0,1} ,k
i ii I k Kλ ∈ ∀ ∈ ∈ (20)

Constraints (18) guarantee that each task j is assigned to exactly one agent, and

constraints (19) ensure each agent i receives exactly one assignment of tasks. Note that

this simple model allows any task to be assigned to any agent, so Xi consists of all binary

vectors of length | |J , implying that | || | 2 J
iK = for all i. This model can, indeed, possess a

large number of columns.

 10

2.2 Routing and Scheduling with Time Windows
 (Desrosiers et al. 1995, Ribeiro and Soumis 1994)

The vehicle routing problem with time windows (VRPTW) defines one important

exemplar from this problem class. VRPTW describes a fleet of vehicles that must deliver

a set of customer orders, with each customer being represented by a node in a network.

Vehicles have limited capacities, and customers specify windows of time during which

deliveries should be made. The model allocates orders to vehicles so that vehicle

capacities are respected, and identifies a route for each vehicle that delivers each order

during the customer-specified time window. The column-oriented formulation for this

problem looks exactly like CSEGAP, equations (17)-(20), with indices, parameters and

variables appropriately redefined, and with capacities probably treated as deterministic

quantities. The parameters ˆ , ,k
i ik K∈x now represent potential routes (sets of deliveries

to customers) for vehicle i, each of which covers a subset of the customer set J. A

probabilistic recourse function could include expected penalties for violating time

windows, expected penalties for exceeding maximum route duration, etc.

2.3 Crew Scheduling (Vance et al. 1997, Day and Ryan 1997)

Following the description in Vance et al. (1997), an airline crew-scheduler wishes

to minimize the cost of assigning flight crews to a fixed schedule of flights. Crew

pairings define feasible trip itineraries that can be assigned to some crew. Each pairing

consists of a sequence of flights that starts and ends at a home base, respects limits on

work hours, allows times for rest breaks, and satisfies numerous other restrictions. Set-

partitioning models are the norm for this type of problem (e.g., Vance et al. 1997, Day

and Ryan 1997), and these fit a simplified form of CSSTP0 in which I is a singleton, b is

 11

a vector of 1s corresponding to flights that must be covered by crews, and convexity

constraints (9) are eliminated; the columns ˆ k
i iA x represent pairings.

However, “home-base constraints” may need to be enforced (e.g., Butchers et al.

2001) and these simply modify constraints (9) to

i

k
i i

k K
u i Iλ

∈
≤ ∀ ∈∑ , (21)

where I denotes the set of home bases, ui denotes the number of crews available at i I∈ ,

and the index sets Ki now represents potential pairings for crews based at i. For the

recourse function, we suggest a probabilistic variant on the function that Ehrgott and

Ryan (2002) use to penalize schedules that do not allow adequate time for crews to

switch aircraft. Their function is based on averaged historical information, but could be

modified to represent a penalty function integrated over empirical or fitted delay

distributions.

2.4 Origin-Destination Integer Multi-Commodity Flow Problem
(Barnhart et al. 2000)

The origin-destination integer multi-commodity flow problem restricts the

standard, linear multi-commodity flow problem (Ahuja et al. 1993, chapter 17) by

requiring each of a set of commodities to be shipped from its origin to its destination

using a single path. The formulation for this problem resembles the well-known path-

oriented (i.e., column-oriented) formulation of the linear multi-commodity flow problem

(Ford and Fulkerson 1958), but with binary variables. In particular, 1k
iλ = if commodity

i follows path ik K∈ , and 0k
iλ = otherwise. The main constraints of this problem

require that the sum of all commodities flowing across each arc respect that arc’s

 12

capacity. Constraints (8), converted to inequalities, handle these requirements if we (i)

let bj represent the capacity of arc j, and (ii) define ˆk
ij ia x to be the amount of arc j’s

capacity consumed by path k of commodity i. The convexity constraints (9) guarantee

selection of a single path, with appropriate origin and destination, for each commodity.

For a communications network, say, each component of the recourse function

(,)i i iE h x ξ might represent an expected, path-dependent penalty based on uncertain

link availability (Girard and Sansó 1998) or uncertain “hop delay” (e.g., Papagiannaki et

al. 2003) that is independent of congestion.

The following section investigates, in detail, one additional problem that fits the

framework of TSSP0 and CTSSP0.

3 SOLVING A STOCHASTIC FACILITY LOCATION PROBLEM
BY BRANCH AND PRICE

3.1 A Stochastic Facility Location Problem with Sole Sourcing

A standard, deterministic, facility-location problem aims to identify the best

locations for capacitated production facilities that will ship to established customers to

meet those customers’ demands for some product. The mathematical model must find

the best trade-off between variable and fixed costs (Laporte et al. 1994): More open

facilities leads to lower shipping (variable) costs because plants are closer to customers,

on average; on the other hand, opening more facilities means more facility-installation

(fixed) costs are incurred. The deterministic model typically assumes that all customer

demands will be completely satisfied, and sometimes requires that each customer be

served by a unique facility. This latter requirement is known as sole-sourcing, and the

 13

resulting model is called the (deterministic) capacitated facility-location problem with

sole-sourcing (FLP) (Barcelo and Casanova 1984).

Assume now that some uncertainty in the data arises in the nominally

deterministic FLP: Does a manufacturer really know what his demands, capacities and

costs will be in the future? Let us represent this uncertainty through a finite, discrete set

of scenarios indexed by s, with sc , sd and su representing shipping costs, customer

demands and facility capacities in each scenario, respectively. For simplicity, we assume

that if the aggregate demand for a facility exceeds its capacity to produce, the facility

pays a penalty based on the unsupplied amount. This model is reasonable if the

“unsatisfied demand” is actually satisfied by the relevant facility acquiring extra product

from an outside supplier and shipping it to customers as needed. We are now ready to

present a formulation for the SFLP:

Stochastic Facility Location Problem with Sole-Sourcing (SFLP)

Indices

i ∈ I potential facility locations

j ∈ J customers

s ∈ S scenarios

Data [units]

ic fixed cost for installing a facility at location i [dollars]

ijc expected cost to supply all of customer j’s demand from facility i, assuming no

shortfall in facility capacity every occurs [dollars]

 14

s
jd customer j’s demand under scenario s [tons]

s
iu facility i’s capacity under scenario s [tons]

s
if penalty for each unit of unmet demand for facility i under scenario s [dollars/tons]

sp probability that scenario s occurs

Decision variables [units]

ix 1 if facility i is opened, and 0 otherwise

ijx 1 if customer j is assigned to facility i, and 0 otherwise

s
iy amount of unmet demand for facility i under scenario s [tons]

Formulation (SFLP)

, ,
min s s

i i ij ij s i i
i I i I j J s S i I

c x c x p f y
′ ∈ ∈ ∈ ∈ ∈

+ +∑ ∑ ∑ ∑ ∑
x x y

 (22)

 s.t. 1ij
i I

x j J
∈

= ∀ ∈∑ (23)

 0 ,i ijx x i I j J− + ≤ ∀ ∈ ∈ (24)

 ,s s s
j ij i i

j J
ud x y i I s S

∈
≤− ∀ ∈ ∈∑ (25)

 {0,1}ix i I∈ ∀ ∈ (26)

 {0,1} ,ijx i I j J∈ ∀ ∈ ∈ (27)

 0 ,s
iy i I s S≥ ∀ ∈ ∈ (28)

 15

This type of formulation is known as the extensive form of a stochastic program

(Birge and Louveaux 1997, p. 8), because the second-stage variables and constraints are

made explicit for all scenarios.

3.2 A Column-Oriented Formulation for SFLP

Here we describe a column-oriented formulation for SFLP (CSFLP) that fits

directly into the format of CTSSP0. In this formulation, the term assignment represents

any collection of customers that are served by the same facility. Actually, the forms of

CSFLP and CSEGAP are identical, requiring only a redefinition of indices and variables

(and definitions from SFLP which will not be repeated). (We note that others have used

column generation for solving deterministic facility-location problems before; see Teo

and Shu 2004 and Lorena and Senne 2004.)

Column-Oriented Formulation of SFLP (CSFLP)

Indices

k ∈ Ki possible assignments of customers to a facility i

Data [units]

ˆk
ijx 1 if customer j is assigned to facility i in the kth assignment of customers to that

facility

ˆk
ic total expected cost of the kth assignment of customers to facility i

(ˆ ˆ ˆk k s s
i i ij ij s i i

j J s

c c c x p f y
∈

= + +∑ ∑ , except ˆ 0k
ic = for the null assignment) [dollars]

 16

Decision variables

k
iλ 1 if the kth assignment of customers to facility i is chosen, and 0 otherwise

Formulation (CSFLP): Same as (17)-(20)

A column-oriented formulation like CSFLP cannot be solved directly because it is

impossible, or impractical, to create the full set of columns. Therefore, each Ki is

replaced by a subset to form a restricted master problem (RMP). The solution to the LP

relaxation of the RMP (LP-RMP) then yields dual variables, which can be used to

identify one or more new columns with favorable reduced costs through one or more

column-generation subproblems. In the case of CSFLP, if we seed the RMP with all null

assignments, the following subproblem arises for any facility i:

ˆ ˆ(,)i iµCSUB π

 ()
,

ˆ ˆmin
i i

s s
ij j ij s i i i i

j J s S
c x p f y cπ µ

∈ ∈
− + + −∑ ∑

x y
 (29)

 s.t. s s s
j ij i i

j J
ud x y s S

∈
≤− ∀ ∈∑ (30)

 {0,1}ijx j J∈ ∀ ∈ (31)

 0s
iy s S≥ ∀ ∈ , (32)

where ˆ jπ is the optimal dual variable associated with constraint (18) for customer j in

LP-RMP, and ˆiµ is the optimal dual variable from LP-RMP for the convexity constraint

(19) associated with facility i. By assuming that all of customer i’s demand is shipped

from this customer’s assigned facility (even if a penalty accrues because the facility’s

 17

capacity is exceeded), only the expected values of shipment costs, ijc , need be

considered. Thus, if ijc′ denotes the random, unit shipping cost from facility i to

customer j, []ij ij jc E c d′= , or [] []ij ij jc E c E dξ′= if independence prevails.

If the solution to ˆ ˆCSUB (,)i iµπ defines a non-null assignment of customers to

facility i, this subproblem’s optimal objective-function value gives the reduced cost of the

assignment with respect to the current solution of LP-RMP. A negative reduced cost

indicates that ˆ k
ix should be translated into a column for the RMP, and inserted into it. If

the null assignment is optimal here—recall that the RMP already contains the

corresponding column and therefore this assignment cannot be favorable—then no

favorable column currently exists for facility i.

3.3 Solving the Column-generation Subproblems

The subproblems ˆ ˆCSUB (,)i iµπ are multi-dimensional knapsack problems

(Weingartner and Ness 1967) with elastic penalties in each dimension; Kleywegt et al.

(2002) refer to these as static stochastic knapsack problems. We solve them through

straightforward branch and bound, except that we add “explicit constraint branching”

(Appleget and Wood 2000) by defining the general integer variables gi and adding the

following constraint to each subproblem i:

 0ij i
j J

x g
∈

− =∑ . (33)

The variable gi is an “ECB variable” and receives a higher priority for branching than

does any xij. Intuitively, constraint branching provides a better balanced branch-and-

 18

bound enumeration tree, and this tends to reduce total enumeration (see Ryan and Foster

1981).

3.4 Solving the LP-Relaxation of the Master Problem

Branch-and-price algorithms (e.g., Savelsbergh 1997, Barnhart et al. 1998, Silva

2004) are appearing as complements to the branch-and-cut algorithms which can be

found implemented in practically all commercial MIP solvers. B&P combines a branch-

and-bound algorithm with a column-generation procedure. Achieving good performance

with column-generation is difficult (Lübbecke and Desrosiers 2002), but a number of

enhancements to the basic procedure can help. “Duals stabilization” comprises the most

important enhancement, at least according to our research, so we describe that here

briefly. (See du Merle et al. 1999 and Silva 2004 for more detail.)

“Duals stabilization” attempts to accelerate the column-generation process that

solves CSFLP’s LP relaxation. We follow Du Merle et al. (1999) for this purpose, and

incorporate an elastic dynamic trust region for dual variables. The trust region is always

centered on the most recent solution. It is elastic because penalized violation of the

nominal trust region is allowed, and it is dynamic because its width and penalties are

adjusted continually. This trust-region mechanism is implemented by turning master-

problem equality constraints into elastic ranged constraints. The primal (master-problem)

elastic penalties define the dual trust region’s limits, while primal ranges define the dual

penalties, i.e., the penalties applied if the dual variables fall outside the nominal trust

region.

A trust region of some sort makes sense in this context because (i) the column-

generation mechanism, when viewed in the dual, is essentially Benders decomposition

 19

(Benders 1962), and (ii) Benders decomposition appears to benefit from the use of trust

regions (e.g., Brown et al. 1987, Linderoth and Wright 2002). Of course, many variants

on trust regions could be applied to our problems, but this one is simple and has proven

effective in recent column-generation experiments (Silva 2004, Singh et al. 2004).

3.5 Computational Results

We implement B&P using software from the COmputational INfrastructure for

Operations Research (“COIN-OR,” or simply “COIN”), which provides a repository of

distinct libraries that can be integrated to build optimization algorithms (Lougee-Heimer

2003). The COIN library labeled “BCP” provides the basic framework for a B&P

algorithm (Ralphs and Ladanyi. 2001). Its design anticipates a parallel/distributed

environment, and, unfortunately, the protocol that emulates this environment in our serial

environment incurs some computational overhead. This overhead could be avoided with

some additional programming, so the total solution times reported here, denoted (TT),

exclude that overhead. However, we note that the true CPU time for our implementations

never exceed TT by more than 10%, and the mean overhead for all problems is only

3.1%.

We have implemented our B&P algorithm using COIN’s open solver interface

(OSI), coupled with CPLEX 8.0: The linear relaxation of the RMP and the subproblems

are submitted to CPLEX’s LP solver and MIP solver, respectively. We carry out all tests

on a networked workstation, a Dell Dimension 340 with a 2 GHz Pentium 4 processor

and 1 GB of RAM. For comparison, we also directly solve the extensive formulations of

SFLP using CPLEX 8.0, and report these solution times under “IP” in the tables below.

 20

We investigate eight groups of problems. Each group is defined by problem size,

meaning “number of facilities-number of customers,” and these sizes are: 5-15, 5-30, 8-

24, 8-48, 10-30, 10-40, 10-50 and 10-60. For each problem size, we consider instances

with one, ten or fifty scenarios. (Larger problems with more scenarios are considered

later.) Because run times vary somewhat between randomly generated instances of the

same size, we examine five different instances for each combination of problem size and

number of scenarios. All problems in this paper are solved to optimality.

To generate the test problems, we first create a reference problem—the

superscript “R” below stands for “reference’’—according to the following rules: (i)

Customer demands R
jd are integers from a discrete uniform distribution U(5,25), (ii)

transportation costs R
ijc are integers from U(15,25), (iii) facility capacities are

0.8 /R R
i j

j J

u d I
∈

= ∑ , and (iv) the fixed costs are R R
i ic Cu= for some cost-per-unit-capacity

conversion constant C, which is 1.5 for these examples. Chu and Beasley (1997) use

rules (i) and (ii) to generate the “small instances” of the generalized assignment problem.

For our stochastic instances, demands s
jd are uniformly distributed integers within ±20%

of R
jd , capacities s

iu are ±10% of R
iu , and fixed costs are simply R

i ic c= . Also, facility i

pays an additional 0.4maxs s
i ij

j J
f c

∈
= dollars for each unit of demand it must satisfy through

an outside purchase. Clearly, the parameter settings we have chosen above are somewhat

arbitrary. However, testing assures us that, over a wide range of settings, the large

differences in algorithmic performance remain large, and the conclusions reached do not

change. We have also experimented with problem generators that correlate costs to

 21

Euclidean distances between facilities and customers that are randomly located on a

plane, and also find that our conclusions remain the same.

Tables 1 and 2 show TT for each problem instance solved by (i) IP, (ii) by basic

B&P without duals stabilization and (iii) by B&P with duals stabilization. Values in bold

indicate the fastest times among the three algorithms. Parameter settings with duals

stabilization are fixed for all problems tested, and we set an arbitrary limit of 7,200

seconds on total allowed computation time. Problems are solved to optimality.

Problem Size (facilities-customers)
5-15 5-30 8-24 8-48 Num. of

Scenarios
IP

B&P
w/o
Stz

B&P
w/
Stz

IP
B&P
w/o
Stz

B&P
w/
Stz

IP
B&P
w/o
Stz

B&P
w/
Stz

IP
B&P
w/o
Stz

B&P
w/
Stz

1 3.5 0.5 0.8 2.5 1.7 1.7 2274.9 1.1 14.5 5.8 5.0 2.7
1 0.1 0.3 0.8 1.5 4.1 3.9 * 2.0 2.7 3.8 3.4 2.4
1 3.2 0.6 2.0 0.9 1.4 1.9 274.1 1.6 1.8 4.5 6.4 2.7
1 0.2 0.3 0.6 1.6 2.1 1.9 299.8 1.3 4.4 3.8 3.2 2.6
1 3.6 0.5 1.4 8.6 2.4 2.8 1.8 0.8 0.9 5076.1 61.2 44.6

10 1.3 1.1 1.6 4.2 3.7 3.7 881.0 4.8 9.1 142.4 7.9 4.2
10 1.4 1.0 1.4 5.1 16.6 30.5 2987.5 4.3 7.0 39.7 6.7 5.7
10 1.0 0.9 1.1 1.2 2.8 3.0 231.3 4.8 5.7 20.6 8.4 5.2
10 0.4 0.6 1.3 2.4 3.2 3.6 16.4 2.7 2.9 19.8 6.7 5.9
10 1.0 0.7 1.4 9.4 3.6 6.8 3.9 1.2 1.3 * 29.7 25.8
50 2.5 2.3 3.0 4.9 10.1 10.2 1637.2 45.5 29.6 455.6 40.0 58.5
50 3.1 2.3 4.4 11.0 11.1 11.1 5579.0 8.7 7.6 45.7 20.2 14.0
50 2.8 2.3 2.7 3.4 7.8 8.5 1081.6 8.0 7.6 53.4 25.0 15.9
50 1.3 1.4 3.1 4.3 8.6 10.1 57.4 5.8 6.0 129.1 24.3 20.9
50 3.9 2.7 3.3 12.2 12.1 10.7 6.6 4.2 4.2 990.2 80.1 114.6

Table legend:
Sc: Number of scenarios
IP: CPLEX MIP solver with presolver on
B&P w/o Stz: Branch-and-price without duals stabilization
B&P w Stz: Branch-and-price with duals stabilization
* Problem not solved to optimality within 7,200 CPU seconds.

Table 1. Total time (TT) in CPU seconds, to solve randomly generated SFLPs with
scenario uncertainty. Three different algorithms solve five problem instances
for each combination of size and number of scenarios. (Note: All generated
scenario data for the problem instance in row r, for r =1,…,10, have been
reused in row r+5. This accounts for apparent correlations in runtimes as
exemplified by rows 5, 10 and 15.) Times marked in bold font are the fastest
among the three alternative solution methods.

 22

Problem Size (facilities-customers)
10-30 10-40 10-50 10-60 Num. of

Scenarios
IP

B&P
w/o
Stz

B&P
w/
Stz

IP
B&P
w/o
Stz

B&P
w/
Stz

IP
B&P
w/o
Stz

B&P
w/ Stz

IP
B&P
w/o
Stz

B&P
w/
Stz

1 * 16.7 17.0 15.1 3.0 2.2 * 67.5 143.0 21.5 6.8 3.8
1 3.5 1.1 1.1 7.8 2.1 2.1 * 53.8 50.8 22.3 11.0 5.3
1 44.8 1.0 1.5 14.8 2.8 2.1 1657 9.7 7.2 14.8 8.3 4.4
1 1.4 1.3 1.5 * 36.2 10.2 * 116.8 99.1 13.5 11.9 5.2
1 * 5.3 19.5 6.2 3.2 1.7 50 5.5 4.1 23.8 13.4 4.3

10 * 10.3 12.9 2323.4 6.0 4.0 * 20.6 13.9 37.2 16.7 8.0
10 5.2 2.4 1.8 860.1 5.2 3.8 * 310.4 424.2 3163.1 30.2 22.4
10 7.0 3.3 2.6 262.6 5.6 4.1 * 18.0 14.1 140.5 23.1 14.5
10 5.0 2.0 2.1 * 53.6 77.2 * 19.7 11.7 45.6 14.2 10.8
10 * 15.0 29.4 613.5 5.1 11.2 * 20.5 41.2 30.7 19.7 9.6
50 * 16.2 15.6 3347.3 20.6 14.2 * 99.1 127.2 154.6 37.7 18.8
50 12.6 6.5 7.1 1894.9 14.5 11.6 * 37.9 22.9 * 60.0 50.7
50 51.7 7.7 10.7 573.8 14.8 11.3 * 112.3 171.7 132.3 47.9 39.9
50 16.6 6.7 6.0 * 30.8 27.3 * 33.9 27.9 97.1 34.4 21.5
50 * 26.0 115.0 3559.3 17.3 12.3 * 72.7 111.5 213.3 39.7 22.2

Table legend: same as Table 1

Table 2. Total time (TT) in CPU seconds, to solve randomly generated SFLPs with
scenario uncertainty. Three different algorithms solve five problem instances
for each combination of size and number of scenarios. This table explores
how computation times change as the ratio of facilities to customers
decreases. Times marked in bold font are the fastest among the three
alternative solution methods.

 23

Problem Size (facilities-customers)

5-15 5-30 8-24 8-48

Num. of
Scenarios

SFLP
(%)

CSFLP
(%)

SFLP
(%)

CSFLP
(%)

SFLP
(%)

CSFLP
(%)

SFLP
(%)

CSFLP
(%)

1 18.64 0.00 18.15 0.00 25.29 0.00 22.18 0.00
1 28.48 0.00 22.33 0.00 27.25 0.05 23.26 0.00
1 48.20 0.00 26.65 0.00 27.00 0.00 24.67 0.00
1 16.78 0.04 18.43 0.00 34.65 0.00 22.65 0.00
1 22.16 0.00 19.26 0.00 22.27 0.00 22.49 0.05

10 19.21 0.03 17.11 0.00 25.93 0.07 23.28 0.00
10 34.97 0.00 23.14 0.04 26.21 0.02 21.50 0.00
10 37.36 0.00 24.38 0.00 28.52 0.00 23.79 0.03
10 18.62 0.00 17.77 0.00 31.37 0.00 23.29 0.00
10 20.09 0.00 19.47 0.00 20.93 0.00 21.13 0.00
50 19.37 0.00 17.05 0.00 24.75 0.07 23.66 0.01
50 37.02 0.00 23.15 0.00 25.90 0.00 21.39 0.00
50 36.55 0.00 24.15 0.00 28.68 0.00 24.03 0.02
50 18.87 0.00 17.86 0.00 30.04 0.00 23.73 0.00
50 20.33 0.00 19.22 0.00 21.05 0.00 20.57 0.02

Table 3. Integrality gaps compared between the compact formulation of SFLP (SFLP)
and the column-oriented formulation (CSFLP). These results correspond to
the problems in Table 1.

 24

Problem Size (facilities-customers)
10-30 10-40 10-50 10-60

Num. of
Scenarios

SFLP
(%)

CSFLP
(%)

SFLP
(%)

CSFLP
(%)

SFLP
(%)

CSFLP
(%)

SFLP
(%)

CSFLP
(%)

1 22.35 0.04 32.07 0.00 40.43 0.07 20.72 0.00
1 23.00 0.00 26.59 0.00 41.53 0.06 32.15 0.00
1 21.04 0.00 26.16 0.00 56.96 0.02 25.89 0.00
1 23.92 0.00 26.59 0.00 52.95 0.10 23.19 0.00
1 38.46 0.08 27.41 0.00 45.97 0.00 22.71 0.00

10 22.69 0.02 32.30 0.00 37.85 0.02 21.04 0.00
10 22.28 0.00 27.02 0.00 38.12 0.12 35.53 0.01
10 20.32 0.00 25.77 0.03 55.77 0.00 27.42 0.02
10 21.80 0.00 27.55 0.05 48.76 0.04 23.96 0.00
10 42.51 0.09 27.05 0.00 46.41 0.03 21.74 0.00
50 22.66 0.00 33.43 0.00 38.46 0.03 20.21 0.00
50 21.65 0.00 27.64 0.00 36.00 0.00 35.39 0.00
50 20.73 0.00 25.55 0.00 55.82 0.09 26.89 0.00
50 21.82 0.00 28.18 0.00 47.38 0.00 24.36 0.00
50 42.30 0.06 28.03 0.00 44.95 0.06 22.23 0.00

Table 4. Integrality gaps compared between the compact formulation of SFLP (SFLP)
and the column-oriented formulation (CSFLP). These results correspond to
the problems in Table 2.

3.6 Discussion

Both Tables 1 and 2 provide stark evidence that branch and price can be vastly

superior to branch and bound for solving certain stochastic MIPs, and even certain

deterministic MIPs as evidenced by the results for the single-scenario problems. The key

to this superiority clearly lies in the tighter LP lower bounds provided by CSFLP versus

SFLP: See Tables 3 and 4.

One might be concerned that B&P requires so much overhead that it could not be

effective for small problems. However, the problems in Table 1 have only five or eight

potential facilities, and IP outperforms B&P only in problems with five facilities, and

then only by a small amount. Moreover, average solution times for B&P are at least an

 25

order of magnitude faster than IP, and IP cannot even solve two of the problems within

the time limit of 7,200 CPU seconds. Even for small problems, B&P is a good choice.

Table 2, which covers problems with 10 facilities and 30 to 60 customers, clearly

shows that B&P solution times are more stable and suffer less than IP when the number

of scenarios increases. Observe that: 23 problem instances out of 60 could not be solved

by IP within 7,200 CPU seconds; IP never outperforms B&P; and B&P can be orders of

magnitude faster than solving the original problem, even for single-scenario instances,

i.e., for deterministic problems.

Table 5, below, explores the computational limits of our current B&P

implementation by covering a wider range of problem sizes and number of samples than

do Tables 1 and 2. Camm et al. (1997) solve a facility-location model for a commercial

application with 17 potential facilities and 123 customer zones, so our largest problem is

roughly the same size as at least one real-world problem. We can see here (and to a

degree in Tables 1 and 2) that solution times tend to increase only slowly, perhaps

linearly, with the number of scenarios. Thus, the number of scenarios does not seem to

be a strongly limiting factor with the B&P methodology. This bodes well for solving an

SMIP through sampled approximating problems, since the probability of identifying the

optimal solution for a discrete TSSP increases exponentially with the number of sampled

scenarios (Kleywegt et al. 2002).

Table 5 shows that problem size, in terms of facilities and customers, is a stronger

limiting factor in solving SFLP by B&P. We discuss potential reasons for this in the

following sections.

 26

Problem Size (facilities-customers) Num. of
scenarios 10-60 20-60 15-80 20-100

50 36.4 64.6 47.2 137.2
50 35.2 55.7 65.1 257.2
50 26.9 58.1 54.6 108.2
50 35.9 62.1 44.0 106.0
50 26.7 53.4 106.6 154.9

100 48.2 136.8 132.7 229.6
100 68.4 96.5 108.0 829.6
100 56.2 109.4 238.3 165.7
100 73.0 123.9 75.6 150.0
100 51.0 90.4 76.3 257.0
200 134.6 245.3 181.5 513.0
200 131.3 199.4 302.2 1294.6
200 103.7 168.9 762.1 260.7
200 134.0 184.5 157.1 272.2
200 103.8 174.4 156.5 555.0
300 154.8 374.4 305.4 507.8
300 248.7 305.8 391.2 817.0
300 144.6 250.0 654.1 535.4
300 164.0 320.9 493.2 493.2
300 210.8 276.0 274.4 687.1

Table 5. The total time (TT) in CPU seconds, for randomly generated SFLPs with
scenario uncertainty. This table explores the computational limits of our
current B&P implementation with duals stabilization.

4 SOLVING A SPECIAL CASE OF SFLP EXACTLY

Here we investigate a special case of the SFLP in which uncertain parameters are

independent, continuously distributed random variables. This model paradigm appears

frequently in the literature (e.g., Louveaux and Peeters 1992, Laporte et al. 1994);

however, such models are rarely solved exactly as we shall solve SFLP. Even if the

reader believes such assumptions are unreasonable in a real-world facility-location

problem—independence of demands seem particularly unlikely in the SFLP, for

instance—it is instructive to see that exact solutions can be achieved for such a model in

 27

the column-oriented framework. Perhaps these assumptions will be more appropriate in

other applications of our methodology.

Consider now a random vector vec(, ,)=ξ c d f whose elements represent shipping

costs, customer demands and unmet-demand penalties, respectively. The column-

oriented formulation for SFLP with these random parameters resembles equations (17)-

(20), with the following definitions for the data:

Data [units]

ic fixed cost for installing a facility at location i [dollars]

ijc unit shipping cost from facility i to customer j [dollars/ton]

jd demand from customer j [tons]

ijc expected cost for supplying all of customer j’s demand from facility i, i.e.,

[]ij ij ijc E c d= [dollars]

iu capacity of facility i [tons]

if unit penalty for unmet demand that must be covered by facility i [dollars/tons]

if expected unit penalty []iE f [dollars/tons]

ˆk
ic total expected cost of the kth assignment of customers to facility i,

ˆ ˆ ˆ[(,)]
i

k k k
i i i i i ic E h= + ξc x x ξ) [dollars] or, more precisely,

 28

ˆ0 if 0

ˆ
ˆ ˆ otherwise

k
i

k
i k k

i i i j ij i i
j J

c
f E d x u c

+

∈

 =
 = + − +

∑

x

c x
 (34)

4.1 Normally Distributed Demands

For the special-case model, demand for customer j is independent of other random

quantities, and is assumed to be normally distributed with mean mj and variance vj, i.e.,

~ (,)j j jd N m v . Unmet-demand penalties are continuously distributed random variables

that are independent of demands and other random parameters. In fact, under

independence, these penalties appear in the objective function only through their means,

so they may have arbitrary distributions with finite means. Consequently, we represent

these penalties through their vector of means, denoted f .

For simplicity in exposition, we also assume that the mean and variance for each

demand jd are integers. The reader will see that our techniques easily extend to means

j jmα and variances j jvβ , where jα and jβ are positive scale parameters, and jm and

jv represent integers running from 0 to some finite upper bound. Given the efficiency of

the dynamic-programming solution procedure that uses jm and jv , the scale parameters

can be quite small, and thus a wide range of actual mean-and-variance combinations can

be closely approximated.

The RMP for this model does not change from the column-oriented formulation

(CSFLP) presented in section 3.2. To solve this special case exactly, we will exactly

solve the subproblems corresponding to the formulation (29)-(32). Given equation (34),

 29

the subproblem associated with facility i is this static stochastic knapsack problem

(Kleywegt et al. 2002):

 ()
{0,1}

* min
ij

ij j ij i j ij i i i
x j J j J j J

z c x f E d x u cπ µ
+

∈ ∀ ∈ ∈ ∈

 = − + − + −

∑ ∑ (35)

where s+ ≡ max{0, s}. Evaluating j ij i
j J

E d x u

+

∈

 −

∑ is easy, because we know that

(Kleywegt et al. 2002)

 ()
2

, exp ,
2π 2

m v m
E w m v m

vv

+ = Φ + −
 (36)

for any () (), ~ ,w m v N m v , where ()Φ i denotes the cumulative distribution function of a

standard normal random variable.

Ignoring the constraint-violation penalties for the moment, we apply dynamic

programming to evaluate the functions (, ,)i i ig J m v defined as

 (, ,) min ()i i i ij j ij
j J

g J m v c xπ
∈

= −∑ (37)

 s.t. j ij
j J

m x m
∈

≤∑ (38)

 j ij
j J

v x v
∈

=∑ (39)

 {0,1}ijx ∈ (40)

 30

for max max0,..., , and 0,...,m m v v= = , where max max= and j j
j J j J

m m v v
∈ ∈

=∑ ∑ . (In

practice, much smaller limits on mmax and vmax can and should be used for the sake of

efficiency.)

Initialization:

(, ,) 0 for 0, 0, 0;ig j m v j m v= = = =

(, ,) for 0, 0, 0;ig j m v j m v= +∞ = ≠ ≠

Recursion:

 { }
max

max

1,...,
1,...,

1,...,

(, ,) min (1, ,), (1, ,)i i ij j i j j
j J
m m
v v

g j m v g j m v c g j m m v vπ
=
=

=

= − − + − − − (41)

This recursion is similar to that for a two-dimensional knapsack problem, but for a given

m, the objective value gi does not depend on the index v. This variance will be used in a

final calculation, however.

 Now, since ˆ ix , an assignment of customers to a facility i, yields an aggregate

demand with distribution ˆ ˆ,j ij j ij
j J j J

N m x v x
∈ ∈

∑ ∑ , the optimal objective value for (35)

will be

 (){ }
max

max max

*

1,...,
1,...,

min , , (,)i i i i
m m
v v

z g J m v p E w m u v c µ+
=

=

 = + − + − . (42)

For the case where the facilities capacities iu are also independent and normally

distributed, and independent from the customer demands, the method just described will

 31

work after making a single modification: The expectation in equation (42) changes to

()[], ()i iE w m E u v Var u + − +
.

4.2 Extensions

The methodology described above will fit other problems, but numerical

integration may be required. Suppose, for instance, that each demand can be defined by

1

jK

j jk j
k

d r m
=

= +∑ where all jkr independent and identically distributed (iid) with mean 0

and variance v, and all mj are positive integers; all ui are deterministic, here. Then, any

aggregate demand j ij
j J

d x
∈
∑ can be described through its integer mean j ij

j J
m m x

∈
′ = ∑ ,

and its scaled integer variance ' j
j J

v v K
∈

= ∑ . Thus, the recursion (41) applies with

appropriate adjustments for the scaled variances, and j ij i
j J

E d x u

+

∈

 −

∑ can be

computed by numerical integration over the distribution of j ij
j J

d x
∈
∑ . This will be

straightforward since that distribution is defined through the mean-shifted convolution of

t = ij
j J

x
∈
∑ iid random variables, which is completely defined by its bounded integer

mean m′ , its bounded scaled-integer variance v′ , and the common distribution for jkr .

4.3 Computational Results for Normally Distributed Demands

To build test instances for this special case, we select each of the single-scenario

problems from section 3, and assume that its demand represents the expected value of a

 32

normally distributed demand. The variance for each such demand is then generated as a

discrete uniform random variable on [1, Vj], where Vj is the maximum value that assures

P(0) 0.001jd < ≤ (e.g., Spoerl and Wood 2003). Table 6 displays solution times and

integrality gaps for all 40 problem instances. We use the software suite of section 3 for

solving these problems, but the computer is an IBM G40, Pentium 4 laptop computer

with 1 GB of RAM, running at 3 GHz.

 33

Problem Size B&P without duals stabilization B&P with duals stabilization

Facilities Customers
Soln. time
 (TT, sec.)

Cols. Nodes
Soln. time
 (TT, sec.)

Cols. Nodes

Int. gap
(%)

 0.8 188 1 0.4 194 13 0.00
 1.0 153 1 0.5 181 1 0.00

5 15 0.5 171 1 0.4 143 1 0.00
 0.6 192 1 0.7 205 1 0.00
 0.7 168 1 0.6 191 1 0.00
 11.3 443 1 9.7 404 1 0.00
 9.3 474 1 7.3 437 1 0.00

5 30 9.3 432 1 8.8 438 1 0.01
 9.7 423 1 8.4 416 1 0.00
 18.8 599 9 17.5 695 7 0.04
 1.2 350 1 1.1 337 1 0.00
 1.1 322 1 0.9 310 1 0.00

8 24 3.0 466 9 1.7 326 3 0.05
 1.2 351 1 0.8 296 1 0.00
 1.8 385 1 1.6 363 1 0.00
 9.1 1001 1 6.4 778 1 0.00
 10.2 1006 1 7.0 765 1 0.01

8 48 11.2 1166 5 11.5 1237 9 0.02
 10.4 989 3 7.3 816 9 0.01
 11.5 959 3 7.9 734 3 0.00

 3.3 512 5 2.9 455 7 0.01
 2.8 501 1 2.3 452 1 0.02

10 30 2.7 524 1 2.0 451 1 0.00
 3.3 526 1 2.4 461 1 0.01
 2.5 497 3 5.7 856 3 0.03
 6.5 823 1 5.0 708 3 0.00
 9.3 860 1 6.5 679 1 0.00

10 40 13.9 793 3 11.5 668 3 0.02
 14.0 893 13 19.8 1326 5 0.03
 10.0 791 1 6.7 662 3 0.01
 28.5 1076 1 20.7 862 3 0.03
 37.5 1180 5 22.9 794 5 0.01

10 50 48.9 1624 17 65.3 2144 19 0.07
 32.2 1303 5 34.1 1423 5 0.02
 24.5 1105 1 17.9 837 1 0.00
 73.4 1357 1 56.1 1221 1 0.00
 76.1 1585 15 46.2 1263 5 0.01

10 60 71.7 1434 1 50.1 1213 1 0.00
 90.7 1581 5 66.9 1243 5 0.00
 74.0 1418 1 55.6 1215 1 0.00

Table 6. Total time (CPU seconds) to solve SFLP with B&P when demands are
independent and normally distributed. The times in bold font indicate the
fastest solution time for each problem. (Pentium 4, 3 GHz computer with 1
GB of RAM.)

 34

Problem Size (facilities-customers)

10-60 20-60 15-80 20-100 25-150 30-200
Soln.
time
(TT,
sec.)

Cols.

Soln.
time
(TT,
sec.)

Cols.

Soln.
time
(TT,
sec.)

Cols.

Soln.
time
(TT,
sec.)

Cols.

Soln.
time
(TT,
sec.)

Cols.

Soln.
time
(TT,
sec.)

Cols.

56.1 1221 9.4 1039 110.9 1947 180.2 2421 323.2 3753 1799.7 5859
46.2 1263 9.3 1068 80.5 1719 253.6 3144 451.5 4051 2386.7 6776
50.1 1213 72.9 4092 73.8 1683 117.8 2284 1014.4 5057 * 6644
66.9 1243 11.6 1080 91.4 2023 153.0 2355 613.6 4025 * 6569
55.6 1215 29.4 2525 65.6 1585 208.9 2631 1406.7 5358 2337.7 6359

Table 7. Larger instances of SFLP. Total time (CPU seconds) to solve SFLP with
B&P, duals stabilization only, when demands are independent and normally
distributed. Times marked as “*” indicate the problem could not be solved in
2400 seconds. (Pentium 4, 3 GHz computer with 1 GB of RAM.)

4.4 Discussion

As in the Section 3, we see that duals stabilization is a useful enhancement to the

B&P algorithm.

With some exceptions, results displayed in Tables 1, 2, 5 and 6 indicate that B&P

performs better on problems with a smaller facilities-to-customers ratio. Similar results

have been observed when solving generalized assignment problems, where the tasks-to-

agents ratio correlates positively with the number of feasible solutions the problem

instances have (Savelsbergh 1997, Silva 2004). In turn, the number of feasible solutions

is positively correlated with the number of columns in the column-oriented model, and

the more columns a problem has, the harder it must be to solve using B&P. The glaring

contradiction to this argument is the 10-60 column in Table 2, which shows that these

problems are easier than the 10-50 problems. Theoretically, these 10-60 problems may

have more columns than the 10-50 problems, but the effective number, i.e., the number of

 35

“cost-effective columns” may be smaller. Note that Table 4 shows that the extensive 10-

60 models have tighter LP relaxations than do their 10-50 counterparts, which implies the

system is more capacity-bound in some sense (an artifact of the problem generator).

This, in turn, may mean that the only cost-effective columns are those that use most of a

facility’s nominal capacity, and this is a relatively small number.

5 OTHER COMPUTATIONAL ENHANCEMENTS

The purpose of this paper is to describe an entirely new technique for solving a

class of SMIPs, not to explore a wide range of computational enhancements for this

technique. We have found that one enhancement, duals stabilization, is important for

good performance, so we have provided detailed computational results to demonstrate

that fact. However, we have begun preliminary exploration of a number of potential

computational enhancements, and believe that this warrants a brief discussion. Other

researchers may wish to explore these and other potential enhancements in detail, along

with their myriad parameter settings. We explore the following potential enhancements:

1. “Strong branching:” A set of variables that appear attractive for branching

purposes, rather than a singleton, is selected, and branching is carried out for each

variable selected. Child problems for each branch are created, and fully

optimized, and the most attractive branch is followed. “Most attractive” simply

implies the branch with minimum objective function value for our

implementation, but other rules could be used, of course.. We only consider

“strong-branching sets” of cardinality two: This is a small number compared to

standard applications of strong branching, but the B&P paradigm requires much

more work to re-optimize after branching, so this number must be kept small.

 36

2. “Solve one subproblem:” Rather than attempting to generate a favorable column

for each subproblem before returning to the master problem, we return to the

master problem as soon as some subproblem generates a favorable column: The

column is added to RMP; the LP-RMP is re-solved; the order of the subproblems

is randomized to ensure that algorithm does not focus on one subproblem at the

expense of others; and the search for favorable columns continues. (Tests show

this scheme can be an order of magnitude faster than scanning the subproblems in

a fixed order, and substantially faster then randomizing only after scanning all

subproblems in a temporarily fixed order.)

3. “Delete poor columns:” Periodically, all columns with reduced cost above a given

threshold are deleted from the RMP.

Intuitively, strong branching simply extracts extra information from the

enumeration tree, at some computational cost. Is that cost worth paying? In many

problems, little or no branching takes place, so strong branching cannot help, but it also

incurs little or no cost then.

“Solve one subproblem” is potentially attractive because “solve all subproblems,”

the standard approach, generates a set of columns based on a common set of dual

variables. Because of this, the resulting columns may exhibit much overlap in terms of

the customers assigned. But, overlapping columns cannot exist in an optimal solution to

SFLP, so much column-generation effort may be wasted.

The analog of “delete poor columns” is commonly used in the dual to column

generation, Benders decomposition (Alvarez 2004, Brown 2004). Benders

 37

decomposition repeatedly generates and adds constraints to a master problem, and it may

be beneficial to limit the size of the master problem by periodically eliminating non-

binding constraints. Of course, something that is non-binding now may become binding

later and a deleted row—column in our case—will need to be regenerated later at some

computational cost.

Table 7 displays the results of our preliminary exploration of these “other

computational enhancements” on SFLP with normally distributed demands.

(Experiments with SFLP under scenario uncertainty demonstrate similar results.) B&P

with duals stabilization forms the baseline for computational comparisons, and we only

consider the other enhancements combined individually with the baseline. Every

potential enhancement improves computation times for at least a few problems. Thus,

further investigation of these techniques, combined in various ways and with various

parameter settings, seems warranted. However, the overwhelming improvements with

“solve one subproblem” seem to indicate that it should be immediately adopted as a

standard, along with duals stabilization.

 38

Problem Size

Facilities Customers

 Baseline:
B&P w/
duals
stabilization

 Baseline +
 strong
 branching

Baseline +
solve one

 subproblem

Baseline +
delete poor
columns

 0.4 0.4 0.5 0.4
 0.5 0.5 0.4 0.5

5 15 0.4 0.3 0.2 0.4
 0.7 0.7 0.6 0.7
 0.6 0.5 0.6 0.5
 9.7 9.6 7.1 9.3
 7.3 7.2 5.7 7.1

5 30 8.8 8.7 6.7 8.9
 8.4 8.4 5.7 8.7
 17.5 17.2 11.8 17.4
 1.1 1.1 0.9 1.1
 0.9 1.0 0.9 1.0

8 24 1.7 1.7 1.7 1.7
 0.8 0.9 0.9 0.8
 1.6 1.5 1.2 1.6
 6.4 6.2 6.0 6.2
 7.0 6.9 6.8 6.8

8 48 11.5 11.6 8.1 11.5
 7.3 7.3 7.1 7.2
 7.9 11.8 7.1 7.9

 2.9 2.4 1.8 2.6
 2.3 2.5 1.7 2.3

10 30 2.0 2.2 1.8 2.0
 2.4 2.5 1.7 2.3
 5.7 4.7 1.7 4.7
 5.0 5.1 4.1 4.9
 6.5 6.9 5.0 8.0

10 40 11.5 10.8 6.3 11.0
 19.8 20.0 9.8 19.8
 6.7 7.1 5.8 6.8
 20.7 19.9 15.7 23.1
 22.9 38.3 18.0 23.1

10 50 65.3 57.0 32.2 62.7
 34.1 31.3 85.0 28.1
 17.9 18.2 21.9 17.8
 56.1 56.3 46.8 55.7
 46.2 46.6 34.1 44.3

10 60 50.1 46.5 70.2 46.8
 66.9 97.0 63.2 71.1
 55.6 57.0 55.1 57.4

Table 8. The total time (TT) in CPU seconds, for solving SFLPs with normally
distributed demands. This table starts with B&P with duals stabilization as a
baseline, and explores the use of other potential computational enhancements.
Numbers in bold are the fastest times. “Solve one subproblem” yields the
best single improvement, but note that every potential enhancement is
substantially better than the baseline for at least one problem.

 39

6 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary

This paper has proposed a column-oriented model for a class of two-stage

stochastic mixed-integer programs (SMIPs), and has described examples of well-known

deterministic optimization problems whose stochastic versions fall into this class. We

show how to solve such problems with a branch-and-price algorithm (B&P), using a

stochastic facility-location problem (SFLP) as an example. We solve one version with

scenario uncertainty as well as one with continuously distributed parameters satisfying

certain conditions. We solve both versions exactly, and demonstrate how the algorithm’s

performance can be improved by “duals stabilization” and other techniques. The open-

source code libraries of the COmputational INfrastructure for Operations Research

(COIN-OR) provide the framework for our B&P algorithm, while CPLEX 8.0 comprises

the solver engine.

6.2 Conclusions

This research demonstrates that B&P is an attractive method to solve certain

SMIPs. For SFLP with scenario uncertainty, B&P can be orders of magnitude faster than

solving the original problem by branch and bound, and this can be true even for

deterministic, i.e., single-scenario problems. And, the ability to solve exactly an SMIP

with continuously distributed parameters is highly unusual in the stochastic-programming

literature. Finally, we have shown that the COIN/BCP software will run successful under

 40

Microsoft Windows. We believe this should make the B&P methodology more widely

accessible to researchers and commercial users.

6.3 Recommendations for Further Work

The B&P approach can be used to solve, at least approximately, SMIPs of the

class described in section 2, but with more general probability distributions. For instance,

the methods of “sample-average approximations” (Mak et. al 1999, Kleywegt et al. 2002)

provide probabilistic guarantees on solution quality and are based on repeated solutions

of sampled approximating problems. However, a sampled approximating problem is

essentially identical to a stochastic program with scenario uncertainty.

Sampled subproblems can be used to identify favorable columns in a “nearly

exact algorithm,” too. Suppose that once a subproblem’s integer variables are fixed, i.e.,

a column of the model has been defined, the expected cost of that column can be

estimated highly accurately through sampling. This certainly holds for SFLP, where the

penalties associated with, say, 10,000 sampled demands for some fixed customers-to-

facility assignment can be sampled and averaged in a fraction of a second. For all intents

and purposes then, that average will exactly equal the expected cost for the column, and

the LP-relaxation of a master problem containing such columns would yield exact dual

solutions. The only theoretical gap in this procedure is that the solution of a sampled

subproblem might indicate that a column is favorable, but extended sampling would

reveal that it is not. If we solve many sampled subproblems and cannot identify an

improving column, then we might become convinced that we have, in fact, solved the

 41

LP-RMP. However, a formal procedure will need to be constructed to provide a rigorous

“level of conviction.”

Finally, we note that the COIN/BCP software in originally intended for use in a

distributed/parallel environment. It will be interesting to investigate how well our

procedures perform in such an environment.

7 ACKNOWLEDGEMENTS

Kevin Wood thanks the Office of Naval Research and the Air Force Office of

Scientific Research for their research support, as well as the Naval Postgraduate School

and the University of Auckland for their general support. Eduardo Silva thanks the Naval

Postgraduate School and the Brazilian Navy for their support. Both authors thank the

COIN-OR team for their contributions that made this research possible.

8 REFERENCES

Ahmed, S., N. V. Sahinidis. 2003. An approximation scheme for stochastic integer

programs arising in capacity expansion. Operations Research 51 461-471.

Alvarez, R. E. 2004. Interdicting electrical power grids. Masters Thesis, Operations

Research Department, Naval Postgraduate School, Monterey, California.

Ahuja, R. K., T. L. Magnanti, J. B. Orlin. 1993. Network Flows. Prentice Hall,

Englewood Cliffs, New Jersey.

Appleget, J. A., R. K. Wood. 2000. Explicit-constraint branching for solving mixed-

integer programs. M. Laguna, J.L. González-Velarde, eds. Computing Tools for

 42

Modeling, Optimization and Simulation, Kluwer Academic Publishers, Boston,

MA. 243–261.

Appelgren, L. H. 1969. A column generation algorithm for a ship scheduling problem.

Transportation Science 3, 53-68.

Barcelo J., J. Casanova. 1984. A heuristic lagrangean algorithm for the capacitated plant

location problem. European Journal of Operational Research 15 212–226.

Barnhart, C., C. A. Hane, P. H. Vance. 2000. Using branch-and-price-and-cut to solve

origin-destination integer multicommodity flow problems. Operations Research

48 318-326.

Barnhart, C., E. L. Johnson, G. L. Nemhauser, M.W.P. Savelsbergh, P.H. Vance. 1998.

Branch-and-price: Column generation for solving huge integer programs.

Operations Research 46 316-329.

Beale, E.M.L. 1955. On minimizing a convex function subject to linear inequalities.

Journal of the Royal Statistical Society. 17B 173–184.

Benders, J. F. 1962. Partitioning procedures for solving mixed-variables programming

problems. Numerische Mathematik 4 238-252.

Bertsimas, D. J. 1992. A vehicle routing problem with stochastic demand. Operations

Research 40 574-585.

Birge, J. R., F. Louveaux. 1997. Introduction to Stochastic Programming. Springer-

Verlag, New York.

Brown, G. G. 2004. Personal communication. 17 June.

 43

Brown, G. G., G. Graves. 1981. Real-time dispatch of petroleum tank trucks.

Management Science 27 19-32.

Brown, G. G., G. Graves, M. Honczarenko. Design and operation of a multicommodity

production/distribution system using primal goal decomposition. Management

Science 33 1987 1469-1480.

Butchers, E. R., P. R. Day, A. P. Goldie, S. Miller, J. A. Meyer, D. M. Ryan, A. C. Scott,

C. A. Wallace. 2001. Optimized Crew Scheduling at Air New Zealand. Interfaces

31 30–56.

Butler, J. C., J. S. Dyer. 1999. Optimizing natural gas flows with linear programming and

scenarios. Decision Sciences 30 563-580.

Camm J. D., T. E. Chorman, F. A. Dill, J. R. Evans, D. J. Sweeney, G. W. Wegryn.

1997. Blending OR/MS, judgment, and GIS: Restructuring P&G’s supply chain.

Interfaces 27 (1) 128-142.

Carøe, C. C., J. Tind. 1998. L-shaped decomposition of two-stage stochastic programs

with integer recourse. Mathematical Programming 83 451-464.

Chen, Z.-L., S. Li, D. Tirupati. 2002. A scenario-based stochastic programming approach

for technology and capacity planning. Computers and Operations Research 29

781-806.

Chu P. C., J. E. Beasley. 1997. A genetic algorithm for the generalized assignment

problem. Computers and Operations Research 24 17-23.

COIN. 2004. http://www.coin-or.org (accessed July 2004).

 44

Day, P. R., D. M. Ryan. 1997. Flight attendant rostering for short-haul airline operations.

Operations Research 45 649-661.

Damodaran, P., W. E. Wilhelm. 2004. Branch-and-price methods for prescribing

profitable upgrades of high-technology products with stochastic demands.

Decision Sciences 35 55-82.

Dantzig, G. B., P. Wolfe. 1960. The decomposition principle for linear programs.

Operations Research 8 101-111.

Desrochers, M., J. Desrosiers, M. Solomon. 1992. A new optimization algorithm for the

vehicle routing problem with time windows. Operations Research 40 342-354.

Desrochers, M., F. M. Solomon. 1989. A column generation approach to the urban transit

crew scheduling problem. Transportation Science 23 1-13.

Desrosiers J., Y. Dumas, M. M. Solomon, F. Soumis. 1995. Time constrained routing

and scheduling. M.O. Ball, T.L. Magnanti, C.L. Monma and G.L. Nemhauser eds.

Handbooks in Operations Research and Management Science, Volume 8:

Network Routing, Elsevier, Amsterdam, 35-140.

Du Merle, O., D. Villeneuve, J. Desrosiers, P. Hansen. 1999. Stabilized column

generation. Discrete Mathematics 194 229-237.

Ehrgott, M., D. M. Ryan. 2002. Constructing robust crew schedules with bicriteria

optimization. Journal of Multicriteria Decision Analysis 11 139-150.

Ford, L. R., D. R. Fulkerson. 1958. A suggested computation for the maximal

multicommodity network flows. Management Science 5 97-101.

 45

Gilmore, P. C., R. E. Gomory. 1961. A linear programming approach to the cutting stock

problem. Operations Research 9 849-859.

Girard A., Sansó, B. 1998. Multicommodity flow models, failure propagation, and

reliable loss network design. IEEE/ACM Transactions on Networking 6 82-93.

Holmberg, K., Yuan, D. 2003. A multicommodity network-flow problem with side

constraints on paths solved by column generation. INFORMS Journal on

Computing 15 42-57.

ILOG 2002. ILOG CPLEX 8.0 Reference Manual.

Johnson, E. L. 1989. Modeling and strong linear programs for mixed integer

programming. S. W. Wallace ed. Algorithms and Model Formulations in

Mathematical Programming, Springer-Verlag, 1-43.

Kleywegt A. J., A. Shapiro, T. Homem-de-Mello. 2002. The sample average

approximation method for stochastic discrete optimization. SIAM Journal on

Optimization 12 479-502.

Laporte, G., F. V. Louveaux. 1993. The integer L-shaped method for stochastic integer

programs with complete resource. Operations Research Letters 13 133–142.

Laporte, G., F. V. Louveaux, L. Van Hamme. 1994. Exact solution to a location problem

with stochastic demands. Transportation Science 28 95–103.

Linderoth, J., S. J. Wright. 2002. Decomposition algorithms for stochastic programming

on a computational grid. Optimization Technical Report 02-07, Computer

Sciences Department, University of Wisconsin-Madison.

 46

Lorena, L. A. N., E. L. F. Senne. 2004. A column generation approach to capacitated p-

median problems. Computers and Operations Research 31 863-876.

Lougee-Heimer, R. 2003. The Common Optimization INterface for Operations Research:

Promoting open-source software in the operations research community. IBM

Journal of Research and Development 47 57-66.

Louveaux F. V., D. Peeters. 1992. A dual-based procedure for a stochastic facility

location. Operations Research 40 564-573.

Lübbecke, M. E., J. Desrosiers. 2002. Selected topics in column generation. Les

Cahiers de GERAD G-2002-64, Group for Research in Decision Analysis,

Montreal, Canada. http://www.optimizationonline.org/DB_FILE/2002/12/580.pdf

(accessed July 2004)

Lulli, G., S. Sen. 2004. A branch-and-price algorithm for multi-stage stochastic integer

programming with application to stochastic batch-size problems. Management

Science, to appear.

Mak, W.-K., D. P. Morton, R. K. Wood. 1999. Monte Carlo bounding techniques for

determining solution quality in stochastic programs. Operations Research

Letters 24 47-56.

Papagiannaki, K., S. Moon, C. Fraleigh, P. Thiran, C. Diot. 2003. Measurement and

analysis of single-hop delay on an IP backbone network. IEEE Journal on

Selected Areas in Communications 21 908-921.

Ralphs, T. K., L. Ladanyi. 2001. COIN/BCP User’s Manual. http://www-

124.ibm.com/developerworks/opensource/coin/presentations/bcp-man.pdf

 47

Ribeiro C. C., F. Soumis. 1994. A column generation approach to the multiple-depot

vehicle scheduling problem. Operations Research 42 41-52.

Ryan, D.M., B.A. Foster. 1981. An integer programming approach to scheduling.

A.Wren, ed. Computer Scheduling of Public Transport, Urban Passenger Vehicle

and Crew Scheduling. North Holland, Amsterdam. 269–280.

Savelsbergh, M. W. P. 1997. A branch-and-price algorithm for the generalized

assignment problem. Operations Research 45 831-841.

Sen, S., J. L. Higle. 2000. The C3 theorem and a D2 algorithm for large scale stochastic

integer programming: Set convexification. Stochastic Programming E-Print

Series. (http://dochost.rz.hu-berlin.de/speps).

Shiina T., J. R. Birge. 2004. Stochastic unit commitment problem. International

Transactions in Operational Research 11 19-32.

Singh, K., A. Philpott, R. K. Wood. 2004. Column generation for designing survivable

electric power networks. Working paper, Dept. of Engineering Science,

University of Auckland, Auckland, New Zealand.

Silva, E. F. 2004. Improving branch-and-price algorithms and applying them to

stochastic programs. PhD Dissertation, Naval Postgraduate School, Monterey,

CA, in preparation.

Spoerl, D., R. K. Wood. 2003. A stochastic generalized assignment problem. INFORMS

Annual Meeting, Atlanta, GA, 19-22 Oct.

Teo, C-P., J. Shu. 2004. Warehouse-retailer network design problem. Operations

Research 52 396-408.

 48

Vance P. H., C. Barnhart, E. L. Johnson, G. L. Nemhauser. 1997. Airline crew

scheduling: A new formulation and decomposition algorithm. Operations

Research 45 188-200.

Walkup, D. W., R. J.-B. Wets. 1967. Stochastic programs with recourse. SIAM Journal

on Applied Mathematics 15 1299–1314.

Weingartner, H. M., D. N. Ness. 1967. Methods for the multidimensional 0/1 knapsack

problem. Operations Research 15 83-103.

Wets, R.J.-B. 1966. Programming under uncertainty: the complete problem. Zeitschrift

für Wahrscheinlichkeitstheorie und Verwandte Gebiete 4 316–339.

Wolsey, L. A. 1998. Integer Programming. John Wiley & Sons, New York.

Zhou, J., B. Liu. 2003. New stochastic models for capacitated location-allocation

problem. Computers and Industrial Engineering 45 111-125.

